
Free Downloads
Think Like A Programmer: An

Introduction To Creative Problem
Solving

https://qkdkzw.firebaseapp.com
http://good.neoebooks.com/en-us/read-book/eAPDV/think-like-a-programmer-an-introduction-to-creative-problem-solving.pdf?r=BOPUdM2VdzNK9yBGvV7BAkBrv%2Byhe0S6C%2FBtxRPie0k%3D
http://good.neoebooks.com/en-us/read-book/eAPDV/think-like-a-programmer-an-introduction-to-creative-problem-solving.pdf?r=TmqpSytujaHWZWr2FJp9CSNTyWJarmdCQaeiWVkVMKo%3D

The real challenge of programming isn't learning a language's syntaxÃ¢â‚¬â€•it's learning to

creatively solve problems so you can build something great. In this one-of-a-kind text, author V.

Anton Spraul breaks down the ways that programmers solve problems and teaches you what other

introductory books often ignore: how to Think Like a Programmer. Each chapter tackles a single

programming concept, like classes, pointers, and recursion, and open-ended exercises throughout

challenge you to apply your knowledge.You'll also learn how to:Ã¢â‚¬â€œSplit problems into

discrete components to make them easier to solveÃ¢â‚¬â€œMake the most of code reuse with

functions, classes, and librariesÃ¢â‚¬â€œPick the perfect data structure for a particular

jobÃ¢â‚¬â€œMaster more advanced programming tools like recursion and dynamic

memoryÃ¢â‚¬â€œOrganize your thoughts and develop strategies to tackle particular types of

problemsAlthough the book's examples are written in C++, the creative problem-solving concepts

they illustrate go beyond any particular language; in fact, they often reach outside the realm of

computer science. As the most skillful programmers know, writing great code is a creative

artÃ¢â‚¬â€•and the first step in creating your masterpiece is learning to Think Like a Programmer.

Paperback: 256 pages

Publisher: No Starch Press; 1 edition (August 12, 2012)

Language: English

ISBN-10: 1593274246

ISBN-13: 978-1593274245

Product Dimensions: 7.1 x 0.7 x 9.2 inches

Shipping Weight: 1.4 pounds (View shipping rates and policies)

Average Customer Review: 4.3 out of 5 stars 32 customer reviews

Best Sellers Rank: #81,771 in Books (See Top 100 in Books) #21 inÃ‚Â Books > Computers &

Technology > Programming > Languages & Tools > C & C++ > Tutorials #25 inÃ‚Â Books >

Textbooks > Computer Science > Algorithms #59 inÃ‚Â Books > Computers & Technology >

Programming > Algorithms

A Message From Author V. Anton Spraul Ã¢â‚¬Å“Over the past 15 years, I've taught programming

to countless students from every sort of background. A few of them were naturals, but most

struggled, even the ones who would eventually turn into excellent programmers. However, they

weren't struggling with the syntax of the programming language, but rather with applying it to solve

the assigned problems. Knowing how to read a program is very different from knowing how to write

one. While typical books or training courses are often effective at explaining the individual elements

of programming, they tend to offer little advice on combining these elements to solve particular

problems. That's where Think Like a Programmer comes in.Ã¢â‚¬Â•

V. Anton Spraul has taught introductory programming and computer science for more than 15 years.

He is the author of Computer Science Made Simple (Broadway) and How Software Works (No

Starch Press). He offers advice for beginning programmers in his series "Learning to Program: A

Guide" on his website (http://www.vantonspraul.com).

While I was working on my PhD in computer science, part of my job as a TA was to run the

computer lab. I never cared for Java, but I learned enough of it to be able to help the

undergraduates when they got stuck working on their homework assignments.What struck me is

that often the undergrads know more Java than I did; their problem was that they didn't understand

how to solve problems. Once I walked them through the process of designing a solution, then they

could write the program. When I interviewed at Microsoft, the interviewer said the same thing: that

many of the people he had talked to were not able to even answer the first interview question (which

required figuring out a solution to a problem and then coding it).As such, it's no surprise that I was

happy to see this book, with its promise of helping people understand how to solve problems rather

than simply how to write code. The first chapter immediately dives in to solving some logic puzzles;

while these aren't computer related (and some are classic problems that everyone knows) they get

the point across that programming is about solving problems. The actual language is secondary;

what's important is being able to break the problem down to the relevant information and figure out

a way to solve it. Once you have an approach that allows you to tackle the problem, then you can

figure out how to do each individual step.Chapter two switches to solving problems using C++,

rather than generic logic puzzles, and then we're off and running. We follow that with one chapter

each on solving problems using arrays, pointers and dynamic memory, classes, recursion, and code

reuse. Finally we have a chapter about working to your strengths as a programmer to find solutions

efficiently.For the most part, I enjoyed the book. There are a few places where it seems that the

author made a change to a problem or assumption and then didn't fix later text that referred to the

original version; for example, in chapter 5 the default constructor for a student object initializes

grade to 0 and studentID to -1, but the following text refers to a possible error due to grade being

initialized to zero. Except for a problem in chapter two where relevant information is introduced in

the solution rather than the problem description, though, these don't detract too much from the

reading.At the end of each chapter is a list of simply-described programming problems that require

you to thoroughly explore the concept covered in that chapter. Working through them all should take

some time, but will probably be worth it; even as a working programmer, I'm tempted to go through

all of them just to get a better handle on C++, which I rarely use.The book assumes that the reader

understands how to write a program with C++, but everything except the absolute basics has a

review at the start of the relevant chapter. I think this would be a very good text to use for a

freshman course on programming, assuming you can find one these days that still uses C++ rather

than Java! (Although for the most part, the concepts apply to any language, so you could use it with

Java anyway.) Having read this, a novice programmer should be much better equipped to break

down a problem and get to work, rather than staring at the description wondering where to start.I

give this 4.5 stars due to the errors mentioned above, which rounds up to five for a highly

recommended book.Disclosure: I received a free review copy of this book for Vulcan Ears Book

Reviews (vulcanears.com).

This well written book aims to fill the gap between understanding computer code and actually writing

computer code. It does just that :)

Like robot.

Great book to help you think like a programmer..

I recently read Andy Hunt and Dave Thomas' "The Pragmatic Programmer". I thought to myself that

it was interesting to see this book from the perspective of 13 years later and what was still being

practiced actively and where we may have moved on, as well as the suggestions they made to be

effective and, yes, pragmatic programmers.To book end this experience, I wanted to look at another

title that was in a similar vein, but much more recent, as in this title was released just a few months

ago. This book, V. Anton Spraul's "Think Like a Programmer", covers much of the same ground as

"The Pragmatic Programmer", but does so with a much narrower scope. While "The Pragmatic

Programmer" looked to focus on many different aspects of being effective, "Think Like a

Programmer" puts the bulk of its energy on one issue; problem solving and the tools necessary to

approach problems and develop solutions. The goal of this book is to help answer that age old

challenge... I understand the syntax, I can read code, I can modify code, I can work with other

people's code and understand what it's doing, but when I sit down in front of a blank editor, I'm

lost!"Think Like a Programmer" takes the reader down a number of paths to help explain some of

programmings more challenging aspects and do so with generally basic coding structures. The

entire book's examples are in C++, so there is a unity to the problems being presented. While the

examples are in C++, all but a few of the problems could be ported to other languages like Java,

Ruby, Python, etc.. The Chapter on pointers might be the sole exception, and the chapter on

classes comes from the perspective of a language that can be used with both procedural and object

oriented approaches.Don't let the code intimidate you, especially if you are not a programmer by

trade. I did enough C++ programming in college to recognize the structures and the methods used

for the solutions, so there was nothing in the code itself that was terribly frightening or all that

advanced. Beginners, or those who have never seen any C++ code, may feel a little lost in spots,

but Anton takes the time to explain every line. The goal of the book is not to focus specifically on

coding syntax, but on the problem solving domain. Getting good and usable code, that's a definite

bonus, and he makes the case for doing all of the things that Andy and Dave talk about in "Practical

Programmer".The problems all use standard elements of the C++ programming language. Arrays,

pointer, classes and recursion all get a chapter dedicated to their own issues. Problems are

presented and a detailed breakdown as to how to go about solving them is shown. Each chapter

has a variety of exercises to work through.The last chapter focuses on allowing the programmer to

devise their own game plan to solve problems, and each game plan will be unique to that particular

programmer. Strengths and weaknesses are rarely the same, so making a "best practices" list for

everyone would be pointless. Instead, Anton works the reader through methods and aspects that

can help them create their own unique problem solving methodology, using all the tips and

techniques practiced in the book, and leveraging their own individual strength, weaknesses, and

areas of focus and interest. One thing to be aware of... there are no answers to the exercises

provided. That's by design. the point to the exercises is to see what you would come up with, and

help break the cycle of "blank page, I'm lost!"Bottom Line:Seasoned developers may find this a bit

basic for their tastes. Rank beginners might find the examples intimidating. Those in between, even

those who are not C++ programmers, will likely learn a good deal and help de-mystify a few areas

by working through the examples and problems. As a tester, rather than a programmer, I think that

these titles are helpful to look at the issues that programmers face, as well as the issues and

methods used to solve problems. Since we have to test those solutions, understanding how

programmers get there and the tools they use to get there is helpful. "Think Like a Programmer" is a

solid step in helping both programmers and testers look at these situations in interesting ways.

My college did a decent job of training computer majors to be problem solvers. This book would

have made an excellent companion text to instruction on data structures and algorithms.The author

recommends knowledge of or simultaneous study of C++. I feel it would be accessible to any

programmer in the C language family. Programmers in other languages could also obtain some

benefit, but understanding would be a harder climb.Sure wish my workplace had allowed the luxury

of studying a language before building production applications with it. Some of the author's

recommendations in the last chapter are not always within the working programmer's control. The

difference between academia and the rest of the world.All in all, well written, good use of examples,

and sensible exercises to put the concepts into practice.

Very thought provoking and interesting way of organizing your programming

Great book. Uses C++ and elaborates on most programming concepts and issues and puts them in

words that allows you to conceptually understand. This book had arrived badly damaged, as if it

was kicked across a concrete floor and then put into the box for shipping.. contacted for a

replacement so all is well.

Think Like a Programmer: An Introduction to Creative Problem Solving CRITICAL THINKING: A

Beginner's Guide To Critical Thinking, Better Decision Making, And Problem Solving ! (critical

thinking, problem solving, strategic thinking, decision making) Clinical Problem Solving in

Orthodontics and Paediatric Dentistry, 2e (Clinical Problem Solving in Dentistry) Clinical Problem

Solving in Orthodontics and Paediatric Dentistry - E-Book (Clinical Problem Solving in Dentistry)

Clinical Problem Solving in Periodontology and Implantology, 1e (Clinical Problem Solving in

Dentistry) Know Your Onions - Graphic Design: How to Think Like a Creative, Act like a

Businessman and Design Like a God Act Like a Lady, Think Like a Man, Expanded Edition CD:

What Men Really Think About Love, Relationships, Intimacy, and Commitment Act like a Lady,

Think like a Man: What Men Really Think About Love, Relationships, Intimacy, and Commitment

How to Think Like Sherlock: Improve Your Powers of Observation, Memory and Deduction (How To

Think Like series) Act Like a Lady, Think Like a Man, Expanded Edition: What Men Really Think

About Love, Relationships, Intimacy, and Commitment The Graphic Designer's Digital Toolkit: A

Project-Based Introduction to Adobe Photoshop Creative Cloud, Illustrator Creative Cloud &

http://good.neoebooks.com/en-us/read-book/eAPDV/think-like-a-programmer-an-introduction-to-creative-problem-solving.pdf?r=cvXRafHsk3we%2FQXqsgzJa1%2BWuyVRX7st8x67sGAtv2A%3D

InDesign Creative Cloud (Stay Current with Adobe Creative Cloud) Introduction to Orthotics: A

Clinical Reasoning and Problem-Solving Approach, 4e (Introduction to Splinting) Do You Think

What You Think You Think?: The Ultimate Philosophical Handbook Creative Problem Solving:

Multiple Strategies for the Same Answer, Grade 7 Strategies for Creative Problem Solving (3rd

Edition) Creative Problem Solving, Grade 6: Multiple Strategies for the Same Answer Creative

Problem Solving: Multiple Strategies for the Same Answer, Grade 5 Creative Problem Solving,

Grade 8: Multiple Solutions for the Same Answer Creative Problem Solving, Grade 3: Multiple

Strategies for Finding the Same Answer Creative Problem Solving, Grade 4: Multiple Solutions for

the Same Answer

https://qkdkzw.firebaseapp.com/contact.html
https://qkdkzw.firebaseapp.com/dmca.html
https://qkdkzw.firebaseapp.com/privacy-policy.html
https://qkdkzw.firebaseapp.com/faq.html

